
 

 

Mountain goats in the Budapest Zoo (photograph by Istvan Hargittai) displaying gradual size and 

age changes. They can be considered to be a segment of an “infinite” succession of similarity 

symmetry (see in Figure 16a in the following article). 
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Abstract 

The notion of symmetry brings together beauty and usefulness, science and economy, 

mathematics and human relations. This presentation demonstrates the breadth and 

versatility of the symmetry concept. There are no symmetries specific to various 

disciplines, yet there are differences in emphasis in applications of the concept. The 

sciences, humanities and arts have gradually drifted apart; symmetry can provide a 

connecting link among them. The symmetry concept may be broadened to include 

harmony and proportion, constituents of symmetry often present in architectural 

composition. The symmetries considered here are point group, chiral, space group, and 

translational. While mathematical symmetry is exact and rigorous, the symmetry we 

encounter in everyday life is much more relaxed. The broad interpretation of the 

symmetry concept, coming close to blending fact and fantasy, may help scientists 

recognize trends, changes, and patterns. 

 

Introduction 

The notion of symmetry brings together beauty and usefulness, science and economy, 

mathematics and music, architecture and human relations, and much more, as has been 

shown recently with many examples (Hargittai 1986, 1989; Hargittai and Hargittai 1995, 

1996). There is a lot of symmetry, for example, in Béla Bartók’s music. It is not known, 

however, whether he consciously applied symmetry or was simply led intuitively to the 

golden ratio so often present in his music. Bartók himself always refused to discuss the 

technicalities of his composing and stated merely “We create after Nature.” Another 

unanswerable question is how these symmetries contribute to the appeal of Bartók’s 

music, and how much of this appeal originates from our innate sensitivity to symmetry. 

This question might be equally asked of symmetries in architectural composition. 

The present chapter takes a broad view of the symmetry concept. It demonstrates its 

breadth and versatility. There are no distinctly different specific symmetries in various 

disciplines, yet there are discernible differences in emphasis of the application of this 

concept in different fields. This emphasis changes with time as well. For example, there 

is a marked emphasis on the presence of symmetry in chemistry, in contrast to physics 
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where the importance of broken symmetries has been stressed during the past decades. 

Generally though the symmetry concept unites rather than divides the different branches 

of science, and even helps bridge the gap between what C.P. Snow called “two cultures.” 

Sciences, the humanities, and the arts have all drifted apart over the years and symmetry 

can provide a connecting link among them. Its benefits are available to us if we free 

ourselves from the confinements of geometrical symmetry. 

Everything is rigorous in geometrical symmetry. According to one definition, 

“symmetry is the property of geometrical figures to repeat their parts” (Shubnikov 1951). 

Another definition says that “a figure is symmetrical if there is a congruent 

transformation which leaves it unchanged as a whole, merely permuting its component 

elements” (Coxeter 1973). In the geometrical sense, symmetry is either present or it is 

absent. Any question regarding symmetry has a restricted yes/no alternative. For the real, 

material world, however, degrees of symmetry and even gradual symmetry is feasible and 

applicable. Beyond geometrical definitions there is another, broader meaning to 

symmetry—one that relates to harmony and proportion, and ultimately to beauty. This 

aspect involves feeling and subjective judgment and, as a result, is especially difficult to 

describe in technical terms. 

Simple considerations are indispensable in classifying different kinds of symmetry. 

There are two large classes of symmetry, point groups and space groups. For point group 

symmetries there is at least one special point in the object or pattern that differs from all 

the others. In contrast to this, in space groups, there is no such special point. There are 

also some terms that are useful in the description of different types of symmetry. Thus, 

the action that characterizes a particular type of symmetry is called a symmetry operation. 

The tool whereby the operation is performed is called a symmetry element. 

Point Group Symmetry 

The simplest kind of point-group symmetry is bilateral symmetry. Bilateral symmetry is 

present when two halves of the whole are each other’s mirror images (Fig. 40.1). This is 

the most common symmetry and the every-day usage of the term “symmetry” refers to 

this meaning. The symmetry element is a mirror plane, also called a symmetry plane or a 

reflection plane. The symmetry operation is reflection. Applying a mirror plane to either 

of the two halves of an object with bilateral symmetry recreates the whole object. 

Bilateral symmetry is probably the most common symmetry in architecture as well, from 

simple buildings to larger assemblies (Fig. 40.2a, b). 



 

Fig. 1 The orchid has bilateral symmetry. Photo: authors 



 

Fig. 2 (a) The whole assembly of the Blue Mosque in Istanbul, Turkey, has bilateral symmetry. (b) The 

design of St. Peter’s Square in Vatican City also shows bilateral symmetry. Photo: authors 

Another kind of point-group symmetry is rotational symmetry (Fig. 40.3). It is present 

when, by rotating an object around its axis, it appears in the same position two or more 

times during a full revolution. Rotation is the symmetry operation and the axis of rotation 

is the symmetry element. Rotational symmetry may be twofold, threefold, fourfold, etc. It 

is common that reflection and rotation appear together. The presence of some symmetry 

elements may generate others and vice versa. If we look at the Eiffel tower from below 

(Fig. 40.4) we have twice two orthogonal reflection planes which generate a fourfold 

rotation. The cupolas of many state capitols and other important buildings have 

reflectional and rotational symmetry together (Fig. 40.5). 



 

Fig. 3 This hubcap has sevenfold rotational symmetry. Photo: authors 

 

Fig. 4 The Eiffel Tower from below. It shows both reflections and rotational symmetry. Photo: authors 



 

Fig. 5 The cupola of the Hungarian Parliament with both reflectional and rotational symmetry. Photo: 

authors 

The regular polygons, so basic in architectural design, also have both rotational and 

reflectional symmetry. Best seen when viewed from above, many buildings have outlines 

of a regular polygon (Fig. 40.6). The regular polyhedra, also called Platonic solids, all 

have equal regular polygons as their faces. As H.S.M. Coxeter, professor of mathematics 

at the University of Toronto, remarked, “the chief reason for studying regular polyhedra 

is still the same as in the times of the Pythagoreans.” Namely, that their symmetrical 

shapes appeal to one’s artistic sense. There are other highly symmetrical polyhedra, 

called Archimedian polyhedra, whose faces are also regular polygons but not identical 

ones. Buckminster Fuller’s geodesic dome is composed of lightweight bars forming 

regular polygons. His geodesic dome at the Montreal expo (Fig. 40.7) inspired some 

chemists who saw that the structure of a newly discovered substance may be the 

truncated icosahedron. This molecule, C60, called buckminsterfullerene (Fig. 40.8) is 

characterized, among others, by six axes of fivefold rotation (Hargittai and Hargittai 

1994: 100–101). Experimentally discovered in 1985, its great relative stability was 

predicted already in 1970, based solely on symmetry considerations. 



 

Fig. 6 The outline of the Pentagon in Washington, D.C. with its regular pentagonal shape. Photo: authors 

 

Fig. 7 Buckminster Fuller’s Geodesic Dome at the Montreal Expo. Photo: authors 



 

Fig. 8 C60, the buckminsterfullerene molecule. Image: authors 

Chirality 

A special kind of symmetry relationship is when two objects are related by mirror 

reflection and the two objects cannot be superposed. Our hands are an excellent example, 

and the term chiral derives from the Greek word for hand. Chiral objects have senses and 

following the hand analogy they are left-handed (L) and right-handed (D). The simplest 

chiral molecule is a methane derivative in which three of the four hydrogens are replaced 

by three different atoms, such as, for example, fluorine (F), chlorine (Cl), and bromine 

(Br). There may then be a left-handed C(HFClBr) and a right-handed C(HFClBr) 

molecule which will be each other’s mirror images but won’t be superposable (Fig. 40.9). 

A chiral object and its mirror image are called each other’s enantiomorphs. 

 

Fig. 9 A chiral pair of molecules. Image: authors 

The two chiral molecules look the same in every detail; only their senses are different. 

The distinctions between the twins of a chiral pair have literally vital significance. Only l-

amino acids are present in natural proteins and only d-nucleotides are present in natural 



nucleic acids. This happens in spite of the fact that the energy of both enantiomers is 

equal and their formation has equal probability in an achiral environment. However, only 

one of the two occurs in nature, and the particular enantiomers involved in life processes 

are the same in humans, animals, plants, and microorganisms. The origin of this 

phenomenon is a great puzzle. 

Once a chiral molecule happens to be in a chiral environment, the two chiral isomers 

will be behaving differently. This different behaviour is manifested sometimes in very 

dramatic ways. In some cases one isomer is sweet, the other is bitter. In some other cases 

the drug molecule has an “evil twin.” A tragic example was the thalidomide case in the 

1950s in Europe, in which the right-handed molecule cured morning sickness and the 

left-handed one caused birth defects. Other examples include one enantiomer of 

ethambutol fighting tuberculosis with its evil twin causing blindness, and one enantiomer 

of naproxen reducing arthritic inflammation with its evil twin poisoning the liver. 

Ibuprofen is a lucky case in which the twin of the chiral form that provides the curing is 

converted to the beneficial version by the body. 

Even when the twin is harmless, it represents waste and a potential pollutant. Thus, a 

lot of efforts are directed toward producing enantiomerically pure drugs and pesticides. 

One of the fascinating possibilities is to produce sweets from chiral sugars of the 

enantiomer that would not be capable of contributing to obesity yet would retain the taste 

of the other enantiomer. 

Chiral symmetry is also frequently found in architectural design either in two- or in 

three dimensions, as illustrated by Fig. 40.10. 

 

Fig. 10 Chiral rosettes on a building in Bern, Switzerland. Photo: authors 

Space Group Symmetry 

A different kind of symmetry can be created by simple repetition of a basic motif leading 

us to space-group symmetries. The most economical growth and expansion patterns are 

described by space-groups symmetries. There are three basic cases of space groups, 

depending on whether the basic motif extends periodically in one direction only, or in 

two, or finally, in three. These three cases are described by the so-called one-

dimensional, two-dimensional, and three-dimensional space groups. 

Border decorations are examples of one-dimensional space groups. In border 

decorations a pattern can be generated simply by repeating a motif at equal intervals. This 

is translational symmetry. The symmetry element is constant translation; the operation is 

the translation itself. The resulting pattern shows periodicity in one direction. Repetition 

can be achieved by a simple shift in one direction as can be seen very often in the rows of 

columns of grandiose buildings (Fig. 40.11) or in the ancient aqueducts of the Romans. 

Fences are typical examples of one-dimensional space groups (Fig. 40.12), the ease and 



economy of using the same elements repeatedly makes this obvious. Repetition can also 

be achieved in other ways, such as by reflection, rotation (Fig. 40.13), or glide- reflection. 

Glide-reflection is another new element that does not occur in point-group symmetries. It 

means the consecutive application of translation and horizontal reflection. When we walk 

in wet sand along a straight line we leave behind a pattern of footprints whose symmetry 

is described by glide-reflection. There is a total of seven possibilities for generating one-

dimensional space-group symmetries. 

 

Fig. 11 Colonnade on St. Peter’s square in Vatican City. Photo: authors 

 

Fig. 12 Repeating pattern of a fence in the Topkapi Palace in Istanbul, Turkey. Photo: authors 



 

Fig. 13 Another illustration for one-dimensional space groups: the units turn 90° at every 

translation in this chain. Photo: authors 

Helices and spirals have also one-dimensional space-group symmetries although their 

bodies may extend to three dimensions (Hargittai and Pickover 1992). Helical symmetry 

is created by a constant amount of translation accompanied by a constant amount of 

rotation. In spiral symmetry, again, translation is accompanied by rotation but the amount 

of translation and rotation changes gradually and regularly. An extended spiral staircase 

has helical symmetry. Well-ordered biological macromolecules also have helical 

symmetry. Helices are always three-dimensional whereas there are spirals that extend in 

two dimensions only. Occurrences of spirals may be as diverse as chemical waves and 

galaxies and snails. Spirals and helices have also been used in various ways in 

architecture, from ancient times to the present, as Trajan’s column in the Forum 

Romanum (Fig. 40.14) and the spiral ramp of Frank Lloyd Wright’s Guggenheim 

Museum in New York indicate. 



 

Fig. 14 Spiral symmetry of Trajan’s column in the Forum Romanum in ancient Rome. Photo: 

authors 

Another beautiful example of spiral symmetry is the scattered leaf arrangement around 

the stems of plants, called phyllotaxis. Numbers of the Fibonacci series (1, 1, 2, 3, 5, 8, 

13, 21, …—each new element is the sum of the two previous elements) characterize the 

ratios defining the occurrence of every consecutive new leaf in scattered leaf 

arrangements. Thus, for example, there is a new leaf at each 3/8 parts of the 



circumference of the stem as we move along the stem in one of the characteristic cases. 

The pineapple (Fig. 40.15) displays a pattern of spirals that can be thought of as if it were 

a result of compressed phyllotaxis. Such ratios when involving very large numbers 

approximate an important irrational number, 0.381966…, expressing the so-called golden 

ratio. The golden ratio is created by the golden section in which a given length is divided 

such that the ratio of the longer part to the whole is the same as the ratio of the shorter 

part to the longer part. If the whole is 1.00, the lengths of the longer and shorter parts will 

be 0.618 and 0.382, respectively. This may be the single most important proportion in 

architecture and in artistic expression. Its relationship to phyllotaxis may have inspired 

Leonardo da Vinci’s description of the scattered leaf arrangement as “more beautiful, 

more simple, or more direct” than anything humans could devise (Leonardo da Vinci 

1939). 

 

Fig. 15 The pineapple displays a pattern of spirals that can be thought of as if it were a result of compressed 

phyllotaxis. Photo: authors 

Spiral symmetry can also be considered as belonging to the broad concept of similarity 

symmetry. Here pattern generation always involves an increment of a characteristic 

property (Fig. 40.16). 



 

Fig. 16 (a) Similarity symmetry, the increments being the change in size or the change in age. (b) An 

architectural example of similarity symmetry where the increment is the change in size of the units of the 

church-tower in London, England. Photo: authors 

With two-dimensional space-groups, there is a total of 17 ways to generate different 

patterns. It is a special case when the planar network covers the plane without gaps and 

overlaps. Of the regular polygons, only the equilateral triangle, the square, and the 

regular hexagon are capable of covering the plane without gaps and overlaps. For 

arbitrary shapes though, there are infinite possibilities. M.C. Escher’s periodic drawings 

and the wall decorations in the Alhambra of Granada, Spain (Fig. 40.17) are famous 

examples. The façades of buildings, especially those of modern skyscrapers often display 

symmetries in two dimensions (Fig. 40.18). 

 

Fig. 17 Two-dimensional space group: decoration from the Alhambra Granada, Spain. Photo: 

authors 



 

Fig. 18 The façades of modern skyscrapers are typical examples of repetitions in two dimensions. 

Photo: authors 

Space utilization by periodic arrangements seems to be the underlying principle of the 

occurrence of three-dimensional space-group symmetries. This is a common arrangement 

of the building elements in crystals. The packing of spheres was first considered as the 

key to the internal structure of crystals by Johannes Kepler. As he was looking at the 

exquisitely beautiful hexagonal snowflakes, he made drawings of sphere packing, similar 

to a pyramid of canon balls (Fig. 40.19). 

 



Fig. 19 Random arrangement of canon balls provides much poorer space utilization than their 

regular arrangement. Photo: authors 

There are restrictions for the regular and periodic structures, such as the 

nonavailability of fivefold symmetry in generating them. This can be understood easily 

when we find it impossible to cover the plane without gaps or overlaps with equal-size 

regular pentagons. 

Crystals are advantageous for the determination of the structure of molecules. The 

great success of X-ray crystallography may have diverted attention from structures of 

lesser symmetry though of not necessarily lesser importance. The discovery of 

quasiperiodic crystals [in short, quasicrystals (Hargittai 1990)] by the Israeli scientist Dan 

Shechtman in 1982 has by now persuaded many scientists that their view of crystals is 

unnecessary narrow. David Mermin compared abandoning the traditional classification 

scheme of crystallography, based on periodicity, to abandoning the Ptolemaic view in 

astronomy, and likened changing it to a new foundation to astronomy’s adopting the 

Copernican view (Mermin 1992). 

Recently, even such descriptive fields of biology as zoology have displayed a growing 

activity in symmetry matters. Not surprisingly, the role of external symmetry is being 

recognized as decisive in mate selection. Empirical evidence supports the notion relating 

“animal beauty” to the symmetry of outlook. The degree of left-and-right correspondence 

of the wings seems to correlate with hormone and pheromone production (Angier 1994: 

C1). 

In view of the fundamental importance of the symmetry concept, it is surprising that 

even very basic discoveries about it were left to be made in this century. When P.A.M. 

Dirac was asked about Einstein’s most important contributions to physics, he singled out 

Einstein’s “introduction of the concept that space and time are symmetrical” (Yang 1991: 

11). An important step was Emmy Noether’s recognition that symmetry and conservation 

are connected. Indeed, the idea that the great conservation laws of physics, like the 

conservation of energy and momentum, are related to symmetry opened up a wholly new 

way of thinking for scientists. Realizing that Nature included continuous symmetry in her 

design physicists started to look for new connections. 

It was Dirac who had the prescience to write already in 1949, that “I do not believe 

that there is any need for physical laws to be invariant under reflections” (Dirac 1949). 

Yet, even most physicists were surprised by the discovery of the nonconservation of 

parity in 1957 that brought the Nobel prize in physics to T.D. Lee and C.N. Yang. C.P. 

Snow called this discovery one of the most astonishing in the whole history of science. 

Since then broken symmetries have been receiving increasing attention. 

There seems to be a difference in approach and emphasis between physicists and 

chemists in viewing symmetry. It may even be related to the ancient Greek philosophers, 

stressing the importance of continuum by Aristotle, and of the discreet, by Lucretius and 

Democritos. From the point of view of continuum, even the ideal crystal may be 

discussed in terms of broken symmetries. On the other hand, the chemist’s approach is 

succinctly symbolized by Democritos’ statement: “Nothing exists except atoms and 

empty space; everything else is opinion.” 

Of course, the way symmetry is looked at can vary a great deal. While mathematical 

symmetry is exact and rigorous, the symmetry we encounter in everyday life is much 

more relaxed. The vague and fuzzy interpretation of the symmetry concept may also aid 



scientists to recognize trends, characteristic changes, and patterns. This is getting close to 

blending fact and fantasy. As Arthur Koestler expressed it, “artists treat facts as stimuli 

for the imagination, while scientists use their imagination to coordinate facts” (Koestler 

1949). 
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